ã¯ããã«
Falcon LLM ã¢ãã«ãšãããå€§èŠæš¡èšèªã¢ãã«ã SageMaker ã§èšç·Žããã»ãããŒãåããŠããã®ã§ãã®éå ±ãšãªããŸãã
å£èªã®ç¿»èš³ãšãªãã®ã§ãå€å°åé·ãšãªããšãããããããšæããŸããã
ãã®ãããã¯åž°åœæ¬¡ç¬¬ä¿®æ£ãéæè¡ãªã£ãŠããããšæããŸãã
å€§èŠæš¡èšèªã¢ãã«ãã©ããã£ãã¢ãããŒãã§èšç·ŽããSageMaker ã®éžæã«è³ã£ãã®ãããã®èšäºã§è¿œã£ãŠãããããšæããŸãã


åæ®µãšããŠïŒAI technology development and its impact on sustainable development goals.
ä»å¹Žã®6æã«ã¢ã©ãéŠé·åœé£éŠåã® AI äŒæ¥ã®ã¹ãã³ãªããçºè¡šãããŸããã
ãã®äŒæ¥ã¯ Falcon ãããŒã¹ãšããéçºãè¡ãªã£ãŠããŸãã
ãã¯ãããžãŒã€ãããŒã·ã§ã³ã€ã³ã¹ãã£ãã¥ãŒãã§ç§ãã¡ãè¡ãªã£ãŠããããšã¯ãåã«åºçç©ãåºçãç®çãšããŠãã®æè¡ãéçºããã ãã§ã¯ãªãã課é¡ã解決ããããšèããŠããç ç©¶ãè¡ãªã£ãŠããŸãã
ãã®ãããç§ãã¡ã¯ã客æ§ã®äžççãªèª²é¡ã«è³ãåŸãããã¯ãããžãŒæºåã¬ãã«ãŸã§ãã¯ãããžãŒãéçºããããšã§ããã«å¯ŸåŠãããã®åŸããããããŸããŸãªã客æ§ã«æäŸããŠããŸããŸãªãã€ããããå®è¡ããŸãã
ãããŠããããã¹ã¿ãŒãã¢ããäŒæ¥ãšããŠã¹ãã³ã¢ãŠãããããšãã§ããŸãããäºæ¥åããŠãã³ãã£ãŒãšããŠèšç«ããããšãã§ããŸãã
ç§ãã¡ã¯å
é²ãã¯ãããžãŒãä¿¡ããŠãããããã¯æç¶å¯èœãªéçºç®æšã«å€§ããªåœ±é¿ãäžããã§ããããç§ãã¡ã¯ãæè²ããã«ã¹ã±ã¢ãAI ãã¯ãããžãŒã«çŠç¹ãåœãŠã 17 ã®æç¶å¯èœãªéçºãè€æ°æã£ãŠããŸãã
ãããŠç§ãã¡ã¯ããªãŒãã³ ãµã€ãšã³ã¹ããªãŒãã³ ç ç©¶ããªãŒãã³ ãšã³ãããªãŒãã³ AI ã¢ãã«ãä¿¡ããŠããŸãã
ããã¯å
¬å¹³ã§ããã¹ãã§ããã誰ãããã®ç¥èãç§åŠãå
é²çãªã¢ãã«ã«ã¢ã¯ã»ã¹ã§ããã¹ãã§ãã
äžåºŠã¢ã¯ã»ã¹ã§ããã°ãããŸããŸãªã»ã¯ã¿ãŒã«ãããå°çèŠæš¡ã®èª²é¡ã解決ããé«åºŠãªæè¡ãéçºã§ããããã§ãã
æç¶å¯èœãªéçºç®æšã®äžã§ããã³ã©ãã¬ãŒã·ã§ã³ã®ãªãŒãã³æ§ããšã³ããžãŒãå¹
åºã掻çšããããã«éèŠã§ãã
ãŸããç§ãã¡ã¯ãããã®é«åºŠãªææãéæããã€ã³ã¿ã©ã¯ãã£ã AI ãéçºããã³å°å
¥ããéã«ã人éã®äŸ¡å€èгãšå®å
šãªè¡åã®èæ
®ãä¿è·ããŠããŸããããã¯ã¯ããæã«å§ãŸããŸããã
ãªãã2022 幎 2 æã«ã¯äžçæå€§ã®ã¢ã©ãã¢èª LM ã¢ãã«ãç»å Žããã®ã§ããããã
å€§èŠæš¡ãªèšèªã¢ãã«ãšããŠã® Nora ã®æ©èœã«ã€ããŠç¥ã£ãŠããã®ã¯æè¡ã³ãã¥ããã£ã ãã§ããããããŠç§ãã¡ã¯ãã§ã«ããŒãããããæã£ãŠããããªãœãŒã¹ããã§ã«ç¥ã£ãŠããŸããç§ãã¡ã¯é©åãªè²¡æ¿æè³ãè¡ãªã£ãŠããããã¯ãããžãŒã®é²æ©ã«è²¢ç®ã§ãããšä¿¡ããŠããŸããããã§ç§ãã¡ã¯ Falcon ã®ããŒãããããèšå®ããŸããã
ãã㯠Falcon 100 ATV ã®ãšãã«éå§ãããæ®µéçãªäœæ¥ã§ããããã®åã« 5 ã€ã確èªããã5 ã€ã 1 å åã®ããŒã¯ã³ã§ãã¬ãŒãã³ã°ããããµã€ãºã¯ããã 400 åã®ãã©ã¡ãŒã¿ã§ããã
ãã¡ãããç§ãã¡ã¯ 3 å 5,000 åã®ããŒã¯ã³ã䜿çšããŠãWeb äžã§ 1,800 åã®ãã©ã¡ãŒã¿ãŒããã¡ã€ã«ã«ãã¬ãŒãã³ã°ãããšããæ ãç¶ããŸãã
ãµã€ãºãæ¡å€§ããããšãã§ããŸãã
ããã§ãåæ§ã®ãµã€ãºã® GBT 3 ã䜿çšããŠã¢ãã«ããã¬ãŒãã³ã°ããŸããããšããã¢ã€ãã¢ãçãŸããŸããã
Web ããŒã¿å šäœã䜿çšããŠæ€çŽ¢èšèªã¢ãã«ããã¬ãŒãã³ã°ãããšãåœç€Ÿã®ããŒã¿ã«ééããããŒã¿ããã£ã«ã¿ãªã³ã°ããããŒã¿ ãã€ãã©ã€ã³ãæ§ç¯ããç°ãªããã©ã³ã¹ãã©ãŒããŒçšã®ç°ãªã忣ã¢ãŒããã¯ãã£ã䜿çšããŠãã§ã«ãã¬ãŒãã³ã°ããŠããŸãã
Training a large language model for research and commercialization.
ãããŠéèŠãªã®ã¯ããã®åºç€ãéçºããã°ãããŸããŸãªé¡§å®¢ãããŸããŸãªããžãã¹åéåãã«ããŸããŸãªãŠãŒã¹ã±ãŒã¹ãæ§ç¯ã§ããã»ã©ã®å ±éã¢ã«ãŽãªãºã ãæ§ç¯ã§ãããšããããšã§ãã
ãã®äžã€ã®äŸãã©ãã«ä»ããå¿ èŠãªå€§éã®ããŒã¿ãããã€ã³ããªãžã§ã³ããªæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã§ãã
åŸæ¥ã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ããã¬ãŒãã³ã°ãããšãã¯ãç¹å®ã®ã¿ã¹ã¯ã®ã¿ãåç §ããŠããŸããããã ããå€§èŠæš¡ãªèšèªã¢ãã«ã䜿çšããŸãã
ãã¬ãŒãã³ã°ãå®äºãããšãåæã«ã©ãã«ä»ããããŠããªã倧éã®ããŒã¿ãåŸãããè€æ°ã®ã¿ã¹ã¯ã解決ã§ããæé«ã®åºç€ã¢ãã«ã® 1 ã€ãæã«å ¥ããŸãã
ããã¹ãçæããèªååãShotSpotter ãžã®èŠçŽãããã³ããŸããŸãªç²Ÿç¥ãåéã«ããããã®ä»ã®å€ãã®ã¢ããªã±ãŒã·ã§ã³ãŸã§ã¯ããã¡ããã§ãããç°¡åãªã¹ãããã§ã¯ãããŸããã
æ
ãå§ãŸããŸãã
Training large language models for multilingual capabilities.
æãéèŠãªèŠçŽ ã® 1 ã€ã¯ã³ã¹ãã§ãã
ããããããã§ããªãã解決ããããšããŠããã®ã¯ãåã«ç®ç以äžã®ãã®ãæ§ç¯ããããšããŠããã®ãããããšããããŸããŸãªéçºè
ã®ããŸããŸãªç ç©¶è
ããã®ã¢ãã«ãå©çšããŠã¢ã¯ã»ã¹ã§ããããã«ãæé«ã®ã¢ãã«ã® 1 ã€ãæ§ç¯ããããšããŠããã®ãã©ã¡ãããæç¢ºã«ããªããã°ãªããŸããã
ãããŠãããã§ç§ã¯ åè¿°ã®Falcon ã玹ä»ããŸããåã«ãè¿°ã¹ãããã«ãæ©æ¢°åŠç¿ã¢ããªã±ãŒã·ã§ã³ããããç Žå£ãããã¯ãããžãŒã«é¢ä¿ãªãããããããžãã¹ãçµç¹ã®ããã§ãããããããã¯æœåšçãªåé¡ã解決ãããšãã䜿åœã®ãããæ©æ¢°åŠç¿ã¯äœ¿çšããŸããã
ã§ã¯ã©ããã£ãŠãã£ãã®ããšãããšã5 ã€ã® 400 åãã©ã¡ãŒã¿å ã§ãããã®é©æ°çãªãªãŒãã³ãœãŒã¹ã® 1 ã€ãæ§ç¯ããŸããã
Training a large language model with 100 billion parameters.
ããã¯ãAmazon ã® 384 GPU ã䜿çšã㊠1 ã€ã®ãã®ãšããŒã¯ã³ã䜿çšããŠããŸãã
ãŸããFico ã«ã¯ 1,800 åã®ãã©ã¡ãŒã¿ãŒãããã3 å
5,000 åã®ããŒã¯ã³ã䜿çšããŠãã¬ãŒãã³ã°ãããŠããŸãã
ãŸãããã¬ãŒãã³ã°ã®æåŸã® 1 ãæéã§ã¯ãæå€§ 4000 GPU ã§ãã¬ãŒãã³ã°ãããŸãã
ããã§ã¯ã7é±éã®ããŸããŸãªãµã€ã¯ã«ããã4 ãã 1,800 å ã®ãã©ã¡ãŒã¿ãŒãããããšãããããŸãã
ãããã®ãã¹ãŠã§ããã©ã³ã¹ãã©ãŒããŒã«ãã³ãŒããŒæ§é ã䜿çšããŠããŸãã
ãŸãããã®èšå€§ãªæ°ã®ãã¬ãŒãã³ã°ããŒã¯ã³ã䜿çšããŠEMSããã¬ãŒãã³ã°ããŸãã
ãã¡ãããã®è¡šã§ãã

ããã§ãå®éã«å¹ åºãæ©èœãåããŠããããšããŸãæšè«èŠä»¶ã®èгç¹ããããŸããŸãªãã¥ãŒã®äœ¿çšãå¯èœã§ããããšãããããŸãã
5 å°ãã 100 å°ã® ATV 㯠AI ã®è²¬ä»»ãã䜿çšã匷調ãããªãŒãã³ ãœãŒã¹å¶éã®äžã§å©çšå¯èœã§ãããäžçã§æã匷å㪠LM ã¢ãã«ã® 1 ã€ãã©ã®ããã«æ§ç¯ãããã説æããŸãã
åã«è¿°ã¹ãããã«ãäž»ãªåºæºã® 1 ã€ã¯ããŒã¿ã§ãã ããŒã¿ã修食ãããŠããããšã確èªããããŒã¿ ã»ããå ã®éè€ãåé€ããå¿ èŠããããŸãã
ãããã£ãŠãèæ
®ããå¿
èŠãããæ®µéãè€æ°ãããŸãã
åãã¬ãŒãã³ã°ã®ã³ã³ãã¥ãŒãã£ã³ã° ããžã§ãããå¢ããã«ã€ããŠãããŸããŸãªæ®µéãçµãããšã«ãªããŸãã
ãããã£ãŠãã¢ãã«ã®ãµã€ãºãå¢ãããããã¬ãŒãã³ã°ãé·ãããå¿ èŠããããŸãã
ããã§ãŸããæåã®æ®µéããå§ããŸãããããã§ã¯ãã¡ãããã£ã«ã¿ãªã³ã°ãå®è¡ããããã¹ãã«é¢ããŠæœåºããããã®ããã¹ãŠæœåºããŸãã
ãã®ãããããã¹ãã«çŠç¹ãåœãŠãŸããã
ãããã£ãŠHTML ããŒãžããããã¹ãã®ã¿ãæœåºãã170 以äžã®èšèªãå©çšå¯èœãªèšèªèå¥ãæœåºããŸãã
è±èªãŸãã¯ãšãŒãããæåã®åé€ã®ã¿ã«çŠç¹ãåœãŠãŸãã

çŠç¹ãåœãŠãçç±ã¯äœæ
ã§ããããïŒ
åã«è¿°ã¹ãããã«ãå€§èŠæš¡ãªèšèªã¢ããªã³ã°ã®ããã©ãŒãã³ã¹ã«åœ±é¿ãäžããããããã©ãŒãã³ã¹ãäœäžããããããªãããšã確èªããããã«ãå€ãã®å®éšãè¡ãªããŸããã
æ°å€ãšããŠã®èª€å·®ãšããŠã¯80 ïœ 85% ã®ç¯å²ã§ãã
æ©çš®ã«ããããŸããããŒã¿çã«ã¯é«ç»è³ªãªãã®ãäžå¿ã§ãã
ãããŠãã¡ããããã¥ã¬ãŒã·ã§ã³ãããããŒã¿ãã 17 ïœ 20 çšåºŠã®ç«¯æ°ãåŸããããã®ãã¥ã¬ãŒã·ã§ã³ ããŒã¿ã®å²åãåŸãããŸãã
ç§ãã¡ã¯ãããã¯ã¹ã®æè¡ããŒã¿ã«å¯ŸããäŒè©±ããŒã¿ ã»ãããããã«ããŒã¿ ã»ããã«åã蟌ãŸããŠããäŒè©±ãšããã¯ã¹ã®é©åãªå²åãç¥ãããã«ãå€ãã®å®éšãè¡ãªããŸããã
ç§ãã¡ãæãã§ãã LM ã®å€èšèªã¹ã±ãŒã©ããªãã£ã«ã確å®ã«å¯Ÿå¿ã§ããããã«ããããã«ãç§ãã¡ã¯å€ãã®å®éšãè¡ãªããŸããã
ãããŠæçµçã«ã¯ãç§ãã¡ã ããè±èªãšã©ãã³ç³»ãšãŒãããèšèªã«ãã ãããããšæ±ºå¿ããŸããã
ããªããå°ãããããŸãã¯æ€èšããããšèããŠããäž»ãªè³ªåã® 1 ã€ã¯ã
ããŒã¿ã®ã¿ã®å Žåããã£ã«ã¿ãªã³ã°ãšã¢ããªã±ãŒã·ã§ã³ã䜿çšããŠã¢ãã«ããã¬ãŒãã³ã°ããããšã§ãèªç¶èšèªãªã©ã«ãã£ãŠæž¬å®ãããããŒã¿äœæã§ãã¬ãŒãã³ã°ãããã¢ãã«ãããåªããããã©ãŒãã³ã¹ãçºæ®ããå¯èœæ§ãããããšãããããŸããã
Web ããŒã¿ ã»ããã® 50% ãè¶ ãã匷åãªããŒã¹ã©ã€ã³ããã§ã«ããå Žåãã¢ãã«ã®ããã©ãŒãã³ã¹ãäœäžãå§ããããšãããããŸãã ãããã£ãŠãç¹ã«éå»ã«çµéšãããå Žåã¯ãããŒã¿ã«æ³šæãæãå¿ èŠããããŸãã
Optimizing AI training with Amazon SageMaker and custom containers.
圌ãã¯é«ãå®å®ãããããããç¶æããããšèããŠããŸããã ãã®éšå±ã«ããæè¡è 以å€ã®äººã«ãšã£ãŠãããããã¯åºæ¬çã«ãã¡ããªãã¯ãŸãã¯å°ºåºŠããŸãã¯èšç®ããŒããæ°åŠçæŒç®ãå®è¡ã§ããéãã§ãã
ããã¯èšãæããã°ããã¬ãŒãã³ã°åŠçã®é床ãšãã¹ã±ãŒãªã³ã°åããã®å
¥åã«åºã¥ããŠéåžžã«å
·äœçãªèšç®äºç®ãèšå®ããŸãã
ãããã£ãŠãã¢ãã«ã®ãµã€ãºãã¢ãã«ã®ãã©ã¡ãŒã¿ãŒã®æ°ãã»ããã®ãµã€ãºã«åºã¥ããŠãç¹å®ã®ã³ã³ãã¥ãŒãã£ã³ã°ã§ãã®ã¢ãã«ã®ãã¬ãŒãã³ã°ãçµäºãããã©ãããæ±ºå®ããå ŽåããããŸãã
ãŸãããã¬ãŒãã³ã°ã«ã¯å€§éã®ããŒã¿ãå¿
èŠãªã®ã§ããã¿ãã€ãèŠæš¡ã®ããŒã¿ãå¹ççã«ååŠçããããšèããŠããŸããã
å¹ççã«åäœããæééãã«å®äºã§ããã¯ã©ã¹ã¿ãŒãå¿
èŠã ã£ãã®ã§ããããéåžžã«éèŠã§ããã
ãã®ããŒã¿ãåãã¯ã©ã¹ã¿ãŒã«ç§»åã§ããããã«ããŸãã
å®éšã®æåã®å埩ã§ã¯ããã¬ãŒãã³ã°ã€ã³ã¹ã¿ã³ã¹ 㯠100 ããã 384 GPU ã®äœ¿çšãéå§ããèŠæš¡ãæ¡å€§ããéã« 1000 * 100 å ç®ã®ãã¬ãŒãã³ã°ãéå§ããããšãããã©ãŒãã³ã¹ã®äžè²«æ§ãç¶æããããšããŸãã¯ããã©ãŒãã³ã¹ãžã®åœ±é¿ãããã»ã©å€§ãããªãããšã確èªããããšèããŠããŸããã
ã€ãŸãããã®ã¹ã±ãŒã«ã 84 åãã 4000 åã«ãªãã®ã§ãã
次ã«ç§ãã¡ã¯ããã¬ãŒãã³ã° ããã»ã¹ã«ãããããã©ãŒãã³ã¹ãžã®åœ±é¿ã軜æžããããšèããŠããŸããã
ãã¡ãããç©äºã¯ãã€ãåãã¯å€±æããŸãã
ãããŠããããçç±ãšãªã£ãŠããèšç®æ¥æ°ãäºç®ãäžæããªãããã«ã
ã§ããã ãæ©ããã¬ãŒãã³ã° ããã»ã¹ãåéããããã«ããŸããã
æé©å ã¹ãã¬ãŒãžãæé©åããããšã§ãã¹ãã¬ãŒãžãäžéã«ååšãããã¹ãŠã®éä¿¡ããã¹ãŠã®ããŒããšã¹ãã¬ãŒãžéã§è¡ãªãããŸãã
ãããŠããã®ã³ãã¥ãã±ãŒã·ã§ã³ã¯ããŸãæé©åãããŠããããå¹ççã§ããããŸããã
ããã¯ãã¬ãŒãã³ã° ããã»ã¹å
šäœã®é床ãäœäžãããããšã«ãªãããããã¬ãŒãã³ã° ããã»ã¹ãé«éåããŠæé©åããããã«ããã±ããã«ãããã¹ãŠã®ãã§ãã¯ã確å®ã«æŽ»çšããå¿
èŠããããŸãã
ãã®ããã«ããŠã圌ããçŸåšç®ã«ããŠãããã¹ãŠã®èª²é¡ã«åºã¥ããŠãç§ãã¡ã¯ã·ã³ãã«ãªã¢ãããŒãã«åŸãããšã«ããŸããã
ããã§ããããã£ãäºè±¡ã«éäžãè¿
éã«å§ãããã£ãã®ã§ãAmazon SageMaker ã䜿çšããããšã«ããŸããã
ãã¬ãŒãã³ã°ã€ã³ã¹ã¿ã³ã¹ã®ããŒã ã¯ãHPC ã¯ã©ã¹ã¿ãŒã®æ§ç¯ãããããã®ã€ã³ã¹ã¿ã³ã¹éã®éä¿¡ãšæ§æãè¡ãªãããã«æ§æããããã¹ãŠã®åºç€ãšãªãã€ã³ã¹ã¿ã³ã¹ã®æ§æã«ã€ããŠããŸãæ°ã«ããããããŸããã§ããã
ããã§åœŒãã¯ãAmazon Sage Maker ããã®ããã«äœ¿çšããããšã«ããŸããã

次ã«ãã³ã³ããèªäœã«ã€ããŠã¯ãã«ã¹ã¿ã ã»ããã¢ãããšã«ã¹ã¿ã æ§æã䜿çšããŠã³ã³ããããŒãããåæ§ç¯ããŸããã
ãããã£ãŠã忣ãã¬ãŒã¹ ã©ã€ãã©ãªã¯ããã¹ãŠã®ããŒã¹ ã³ãŒãããã¹ãŠã®ãã¬ãŒãã³ã°ãããã³ã¹ãã¬ãŒãž (ã€ãŸãããã¯ãšã³ã) ãšã®éä¿¡ã®ãã¹ãŠãæ§ç¯ããŠãå®å
šã«ã¹ã¯ã©ããããæ§ç¯ãããŸããã
ãããã£ãŠãããŒã¿ããã«ããŠã³ããŠãs3 ããããŒã¿ãååŸãã圢ãšããŸãã
ãããŠãã¢ãã«ã®ç¶æ
ãä¿åãããšã (ãã§ãã¯ãã€ã³ããšåŒã³ãŸã)
驿ã«ããŒã¿ãã¢ããããŒãããŸãã
圌ãã¯ããã¬ãŒãã³ã°ãå®çŸããããã«ããŸããŸãªããã»ã¹ããã¹ãŠèª¿æŽã§ããã«ã¹ã¿ã ãšãŒãžã§ã³ããæ§ç¯ããŸããã
ããããŠãECR ãªããžããªããã®ãã¹ãŠã®ã³ã³ãããã¯ãªãŒãã³ã° ããã»ã¹ãéå§ãããã®ãã¬ãŒãã³ã°ãç£èŠãããã¹ã¿ãŒã®æ£åžžãªãã§ãã¯ãã€ã³ãããå¿
èŠãªãã¬ãŒãã³ã°ãåéããé害ã®ããããŒãããããã©ããã確èªããŸãã
ããã§ããã¬ãŒãã³ã° ã¯ã©ã¹ã¿ãŒã«ã€ããŠå°ã詳ãã説æããŠãããããšæããŸãã
Falcon ã®ãã¬ãŒãã³ã°ã®ããã«ã500 ä»¥äž (24 åã®ã¹ã©ãã·ã¥ ã€ã³ã¹ã¿ã³ã¹) ãããªã sage Maker ã¯ã©ã¹ã¿ãŒãæ§ç¯ããŸããã
ãããã®åã€ã³ã¹ã¿ã³ã¹ã«ã¯ 8 ã€ã® 100 Nvidia GPU ããããæèŒãããŠãããåäžã€ã³ã¹ã¿ã³ã¹å
ã« 8 ã€ã® GPU ãããããããŸãã
ããã«ããã¹ã«ãŒãããã®å©ç¹ãåŸãããŸããã
ããã¯ã100GPU ãããã®ã€ã³ã¿ãŒã³ãã¯ãã«ã¯ãåãã€ã³ã¹ã¿ã³ã¹å
ã®ä»ã®ãã¹ãŠã® GPU ãšæ¯ç§ 600 ã®ã¬ãã€ãã®é床ã§éä¿¡ã§ãã ã¹ã€ãã ã€ã³ã¿ãŒã³ãã¯ããããããã§ãã
ãŸããããããã¹ãŠã®ã€ã³ã¹ã¿ã³ã¹ã®éä¿¡ã«åœ¹ç«ã€ ãšã©ã¹ãã£ã㯠ãã¡ããªã㯠ã¢ããã¿ãŒããããŸãã
Optimizing machine learning training with AWS. (29:50)
Using AI model Falcon for natural language processing tasks.
çµæãšããŠããªãã®æ°ã®ãµã€ã¬ã³ã GPU é害ãçºçããŸããã
ãããã¯ãŒã¯ã®ã¿ã€ã ã¢ãŠããçºçãããã®ä»ã«ãã¯ã©ã¹ã¿ãŒã®ããŸããŸãªéšåã§é害ãçºçããŸããã
ãã®ãããæåã¯ã¯ã·ã³ãã³ã® GPU 䜿çšçãäœãèšå®ãå§ããŸããããæçµçã«ãã¹ãŠã®åé¡ãæ€åºããããšã¯ã§ããŸããã§ããã
ãã®ãããç§ãã¡ã¯ 3 ã€ã®æ¬¡å
ã§èããã
æ°ãã GPU 䜿çšçããã¬ãŒãã³ã°ãæ©äŒæå€±é¢æ°ã䜿çšãããããã¯ãŒã¯ ã€ã³ã¿ãŒãã§ã€ã¹ããã®ã¹ã«ãŒãããã調ã¹ãŸããã

3 ã€ãã¹ãŠãçµã¿åããããšããããã®ã³ã³ããéã§äœããèµ·ãã£ãŠãããã©ããã®æ
å ±ãåŸãããŸãã
äžéšã®ã€ã³ã¹ã¿ã³ã¹ã§ã¯ãGPU ã®æ§æãéåžžã«é«ãããšãããããŸãããäœãèµ·ãã£ãŠããŸããã
ãŸããSageMaker ãžã§ãã¯ãç§ãã¡ãããŒã¹ãšããŠãããžã§ãã®äžã§æå€§ã®æéãè²»ãããŠããããããç§ãæ§ç¯ããçç±ã§ããã«ã¹ã¿ã㌠ãšãŒãžã§ã³ããåŠçãããã®ã§ããããšã«ã泚ç®ãã䟡å€ããããŸããã
ãã®ãããã©ã ã颿°ã䜿çšããŠãžã§ããããŒã¿æå€±ãã§ãã¯ãã€ã³ãã«ãã§ãŒã³ããŠããŸããã
ãããŠæåŸã«ãããŒã¹ãæ§ã®ã¯ãŒã¯ããŒãã«åããããã«ãs3 ãã±ãããšããŠã¹ã±ãŒãªã³ã°ãšããŒãã£ã·ã§ã³åãè¡ãªãå¿ èŠããããŸãã
ã€ãŸããåºæ¬çã«ã¢ãã«ããã¬ãŒãã³ã°ãããšãã«æãéãã¿ã¹ã¯ã® 1 ã€ãå®è¡ããããšã«ãªããŸãã
ããã¯ãã¢ãã«ã®ç¶æ
ãä¿åãããã§ãã¯ãã€ã³ããäœæããŠããã®ãã§ãã¯ãã€ã³ããã¹ãã¬ãŒãžã«ã¢ããããŒãããããšã§ããããã¯ãFalcon ã®ãã¬ãŒãã³ã°çµæã§ããã
ãã®äžã«ã¯çŽ 4 ãã©ãã€ãã®ãã§ãã¯ãã€ã³ãããããŸããã
ãããã¯2 æéããšã«ãã§ãã¯ãã€ã³ããä¿åããŠããŸããã
ããã«ãããã¯ãŒã¯ ã€ã³ã¿ãŒãã§ã€ã¹ãééãããã©ãã£ãã¯ã®éã¯æ³åã§ããã§ãããã
ãããããããšã«ããããã®ãã¹ããã©ã¯ãã£ã¹ã¯ãã¹ãŠ AWS å ±éã©ã³ã¿ã€ã ã«çµã¿èŸŒãŸããŠããŸãã
ãããã£ãŠãåºæ¬çã«ãAWS SDK ã®å€ããæ¯ãããã€ãã£ã ããŒã«ãšã©ã€ãã©ãªã®ã»ããããããèªåãªã¯ãšã¹ãããªã¯ãšã¹ã ã¿ã€ã ã¢ãŠãã®å詊è¡ãããã³æ¥ç¶ãªãŒããå®è£ ãããã€ãã£ã s3 ã¯ã©ã€ã¢ã³ããå«ãŸããŠããŸãã
ããã¯ããããã¯ãŒã¯ ã€ã³ã¿ãŒãã§ã€ã¹ã®éè² è·ãé¿ããã®ã«åœ¹ç«ã€ãããéåžžã«éèŠã§ãã
ããšãã°ãåéããå¿ èŠããããã§ãã¯ãã€ã³ãã®ãããªéåžžã«å€§ããªãªããžã§ã¯ãããããã¯ã©ã€ã¢ã³ãã䜿çšããŠãããããŠã³ããŒããããšããŸãã
ã¯ã©ã€ã¢ã³ãã¯ããã®ãã¡ã€ã«ã®è€æ°ã®ãã€ãç¯å²ãèªåçã«äžŠè¡ããŠããŠã³ããŒããããããã¹ã«ãŒããããšäœ¿çšéãå¢å ããŸãã

ãããã¯ãŒã¯ ã€ã³ã¿ãŒãã§ã€ã¹ãå®å šã«é£œåãããŠããããã¯ãŒã¯ ã€ã³ã¿ãŒãã§ã€ã¹ãæå€§éã«æŽ»çšã§ããããã«ããŸãã
ãŸããç§ãã¡ã¯æ°æ¥åã« Amazon s3 ã³ãã¯ã¿ãçºè¡šããããšã«ãéåžžã«è奮ããŠããŸãã
ããã¯ãpytorch ã³ã³ãããããå Žåã«çºçãããããã®ã¿ã¹ã¯ã®å€ããæ¯æŽããæé©åãããã®ã§ããããŸãã
ã€ãŸãããã¬ãŒãã³ã° ãžã§ãã®äžéšã«ãã§ãã¯ãã€ã³ããèšå®ããŸãã
å éšã¹ãã¬ãŒãžã«éä¿¡ããŠãã s3 ã«ã¢ããããŒãããã®ã§ã¯ãªããS3ã«çŽæ¥å®è¡ãããããã«ãªããŸããã
確èªãããšãæå€§ 40% ãŸãã¯æå€§ 40% é«éã«ãªã£ãŠããããã§ãïŒ

ã¢ãŒããã¯ãã£ãåºç€çãªéšåãã«ããŒããã ãã§ãªããAI ãã¢ãã«ã®ããã©ãŒãã³ã¹ãšç²ŸåºŠãã©ã®ããã«è©äŸ¡ããããçè§£ããããšãéåžžã«éèŠã§ãã
ã€ãŸãã¯ã¢ãã«ã®è©äŸ¡ã¯ãæ©æ¢°åŠç¿ã¢ãã«ã®ãã¬ãŒãã³ã°ã«ãããŠéåžžã«éèŠãªéšåã§ãã
ã¢ãã«ãã©ãã»ã©åªããŠããããçè§£ããããã«äººéã«ããè©äŸ¡ãè¡ãªããŸããã
ã¢ãã«ã®æè¡çãªéšåã ãã§ãªããã¢ãã«ãã©ãã»ã©å«ççã«å¥å šã§ããããè©äŸ¡ããå¿ èŠããã£ããããããã¯éåžžã«éèŠã§ãã
ããã§ãããã§ã¯éåžžã«ã·ã³ãã«ãªã¢ãŒããã¯ãã£ãæ§ç¯ããSlack ãã£ãã«ã掻çšããŸããã ããã§äœãèµ·ãã£ãŠããããšãããšãç§ãã¡ã¯ãšã³ããã€ã³ãã䜿çšããŠããã¯ã°ã©ãŠã³ãã§ã¢ãã«ããã¹ãããæ¯æ¥ã¢ãã«ã«ãªã¯ãšã¹ããéä¿¡ããã¬ã¹ãã³ã¹ãçæããSlack ãã£ãã«ã«éä¿¡ããTI ã€ã³ã¿ãã¥ãŒ ããŒã ã®æ°äººã«ã調æ»ããŠããããŸããã
ããã€ãã®å¿çãè©äŸ¡ããããããè©äŸ¡ããŸãã
ããã§ç§ãã¡ã¯ãããã 1 ãã 5 ãŸã§åãã¬ãŒãã³ã°ãããããé©åã§ããããæé ãããŠãããã©ããã確èªããŸãã ã€ãŸããããã¯è©äŸ¡ããã»ã¹ã®éåžžã«éèŠãªéšåã§ããã
æåŸã«ãããã¯ã
Falcon ããã¬ãŒãã³ã°ããããã« TI ãš AWS ã®éã§è¡ãªãããã³ã©ãã¬ãŒã·ã§ã³ãèŠçŽãããã®ã§ãã
ãæž èŽããããšãããããŸããã
